您的位置 首页 javascript教程

JavaScript中二叉树,动态规划和回溯法(案例分析)

写的比较匆忙,测试用例是能全部跑通的,不过考虑内存和效率的话,还有许多需要改进的地方,所以请多指教

题目描述

给定一个二叉树,根节点为第1层,深度为 1。在其第 d 层追加一行值为 v 的节点。

添加规则:给定一个深度值 d (正整数),针对深度为 d-1 层的每一非空节点 N,为 N 创建两个值为 v 的左子树和右子树。

将 N 原先的左子树,连接为新节点 v 的左子树;

将 N 原先的右子树,连接为新节点 v 的右子树。

如果 d 的值为 1,深度 d – 1 不存在,则创建一个新的根节点 v,原先的整棵树将作为 v 的左子树。

Example

【相关课程推荐:JavaScript视频教程】

Input: A binary tree as following:       4     /   \    2     6   / \   /   3   1 5   v = 1d = 2Output:        4      / \     1   1    /     \   2       6  / \     /  3   1   5

基本思想

二叉树的先序遍历

代码的基本结构

不是最终结构,而是大体的结构

/** * @param {number} cd:current depth,递归当前深度 * @param {number} td:target depth, 目标深度 */var traversal = function (node, v, cd, td) {    // 递归到目标深度,创建新节点并返回  if (cd === td) {    // return 新节点  }  // 向左子树递归  if (node.left) {    node.left = traversal (node.left, v, cd + 1, td);  }  // 向右子树递归  if (node.right) {    node.right = traversal (node.right, v, cd + 1, td);  }  // 返回旧节点  return node;};/** * Definition for a binary tree node. * function TreeNode(val) { *     this.val = val; *     this.left = this.right = null; * } *//** * @param {TreeNode} root * @param {number} v * @param {number} d * @return {TreeNode} */var addOneRow = function (root, v, td) {    // 从根节点开始递归  traversal (root, v, 1, td);  return root;};

具体分析

我们可以分类讨论,分三种情况处理

第1种情况:目标深度<=当前递归路径的最大深度

处理方法:val节点替换该目标深度对应的节点,并且

● 如果目标节点原来是左子树,那么重置后目标节点是val节点的左子树

● 如果目标节点原来是右子树,那么重置后目标节点是val节点的右子树

第2种情况:目标深度>当前递归路径的最大深度

阅读题目发现,有这么一个描述:“输入的深度值 d 的范围是:[1,二叉树最大深度 + 1]”

所以呢,当目标深度恰好比当前路径的树的深度再深一层时,处理方式是:

在最底下那一层节点的左右分支新增val节点

第3种情况:目标深度为1

我们再分析题意,题目里说:“如果 d 的值为 1,深度 d – 1 不存在,则创建一个新的根节点 v,原先的整棵树将作为 v 的左子树。”

这说明当:目标深度为1时,我们的处理方式是这样的

全部代码

/** * @param {v} val,插入节点携带的值 * @param {cd} current depth,递归当前深度 * @param {td} target depth, 目标深度 * @param {isLeft}  判断原目标深度的节点是在左子树还是右子树 */var traversal = function (node, v, cd, td, isLeft) {  debugger;  if (cd === td) {    const newNode = new TreeNode (v);    // 如果原来是左子树,重置后目标节点还是在左子树上,否则相反    if (isLeft) {      newNode.left = node;    } else {      newNode.right = node;    }    return newNode;  }  // 处理上述的第1和第2种情况  if (node.left || (node.left === null && cd + 1 === td)) {    node.left = traversal (node.left, v, cd + 1, td, true);  }  if (node.right || (node.right === null && cd + 1 === td)) {    node.right = traversal (node.right, v, cd + 1, td, false);  }  return node;};/** * Definition for a binary tree node. * function TreeNode(val) { *     this.val = val; *     this.left = this.right = null; * } *//** * @param {TreeNode} root * @param {number} v * @param {number} d * @return {TreeNode} */var addOneRow = function (root, v, td) {  // 处理目标深度为1的情况,也就是上述的第3种情况  if (td === 1) {    const n = new TreeNode (v);    n.left = root;    return n;  }  traversal (root, v, 1, td);  return root;};

单词拆分

题目描述

给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

说明:

1.拆分时可以重复使用字典中的单词。

2.你可以假设字典中没有重复的单词。

Example

example1输入: s = "applepenapple", wordDict = ["apple", "pen"]输出: true解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。注意: 你可以重复使用字典中的单词。example2输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]输出: false来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/word-break

基本思想

动态规划

具体分析

动态规划的关键点是:寻找状态转移方程

有了这个状态转移方程,我们就可以根据上一阶段状态和决策结果,去求出本阶段的状态和结果

然后,就可以从初始值,不断递推求出最终结果。

在这个问题里,我们使用一个一维数组来存放动态规划过程的递推数据

假设这个数组为dp,数组元素都为true或者false,

dp[N] 存放的是字符串s中从0到N截取的子串是否是“可拆分”的布尔值

让我们从一个具体的中间场景出发来思考计算过程

假设我们有

wordDict = ['ab','cd','ef']s ='abcdef'

并且假设目前我们已经得出了N=1到N=5的情况,而现在需要计算N=6的情况

或者说,我们已经求出了dp[1] 到dp[5]的布尔值,现在需要计算dp[6] = ?

该怎么计算呢?

现在新的字符f被加入到序列“abcde”的后面,如此以来,就新增了以下几种6种需要计算的情况

A序列 + B序列1.abcdef + ""2.abcde + f3.abcd + ef4.abc + def5.ab + cdef6.a + bcdef注意:当A可拆且B可拆时,则A+B也是可拆分的

从中我们不难发现两点

1. 当A可拆且B可拆时,则A+B也是可拆分的

2. 这6种情况只要有一种组合序列是可拆分的,abcdef就一定是可拆的,也就得出dp[6] = true了

下面是根据根据已有的dp[1] 到dp[5]的布尔值,动态计算dp[6] 的过程

(注意只要计算到可拆,就可以break循环了)

具体代码

var initDp = function (len) {  let dp = new Array (len + 1).fill (false);  return dp;};/** * @param {string} s * @param {string[]} wordDict * @return {boolean} */var wordBreak = function (s, wordDict) {  // 处理空字符串  if (s === '' && wordDict.indexOf ('') === -1) {    return false;  }  const len = s.length;  // 默认初始值全部为false  const dp = initDp (len);  const a = s.charAt (0);  // 初始化动态规划的初始值  dp[0] = wordDict.indexOf (a) === -1 ? false : true;  dp[1] = wordDict.indexOf (a) === -1 ? false : true;  // i:end  // j:start  for (let i = 1; i < len; i++) {    for (let j = 0; j <= i; j++) {      // 序列[0,i] = 序列[0,j] + 序列[j,i]      // preCanBreak表示序列[0,j]是否是可拆分的      const preCanBreak = dp[j];      // 截取序列[j,i]      const str = s.slice (j, i + 1);      // curCanBreak表示序列[j,i]是否是可拆分的      const curCanBreak = wordDict.indexOf (str) !== -1;      // 情况1: 序列[0,j]和序列[j,i]都可拆分,那么序列[0,i]肯定也是可拆分的      const flag1 = preCanBreak && curCanBreak;      // 情况2: 序列[0,i]本身就存在于字典中,所以是可拆分的      const flag2 = curCanBreak && j === 0;      if (flag1 || flag2) {        // 设置bool值,本轮计算结束        dp[i + 1] = true;        break;      }    }  }  // 返回最后结果  return dp[len];};

全排列

题目描述

给定一个没有重复数字的序列,返回其所有可能的全排列。

Example

输入: [1,2,3]输出:[  [1,2,3],  [1,3,2],  [2,1,3],  [2,3,1],  [3,1,2],  [3,2,1]]

基本思想

回溯法

具体分析

1. 深度优先搜索搞一波,index在递归中向前推进

2. 当index等于数组长度的时候,结束递归,收集到results中(数组记得要深拷贝哦)

3. 两次数字交换的运用,计算出两种情况

总结

想不通没关系,套路一波就完事了

具体代码

var swap = function (nums, i, j) {  const temp = nums[i];  nums[i] = nums[j];  nums[j] = temp;};var recursion = function (nums, results, index) {  // 剪枝  if (index >= nums.length) {    results.push (nums.concat ());    return;  }  // 初始化i为index  for (let i = index; i < nums.length; i++) {    // index 和 i交换??    // 统计交换和没交换的两种情况    swap (nums, index, i);    recursion (nums, results, index + 1);    swap (nums, index, i);  }};/** * @param {number[]} nums * @return {number[][]} */var permute = function (nums) {  const results = [];  recursion (nums, results, 0);  return results;};

本文来自 js教程 栏目,欢迎学习!

以上就是JavaScript中二叉树,动态规划和回溯法(案例分析)的详细内容,更多请关注php中文网其它相关文章!

文章来源:火云技术网

文章标题:JavaScript中二叉树,动态规划和回溯法(案例分析)

文章地址:https://www.pyhw.net/33030_javascript%e4%b8%ad%e4%ba%8c%e5%8f%89%e6%a0%91%ef%bc%8c%e5%8a%a8%e6%80%81%e8%a7%84%e5%88%92%e5%92%8c%e5%9b%9e%e6%ba%af%e6%b3%95%ef%bc%88%e6%a1%88%e4%be%8b%e5%88%86%e6%9e%90%ef%bc%89.html

关于作者: 火云技术网

热门文章

发表评论

您的电子邮箱地址不会被公开。

网站地图